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First example of spontaneous 
synchronization 

• Huygens, 1665 
 

• Inventor of 
pendulum 
clocks 
 

• Hang two 
clocks to the 
same wall 
 

• In half an hour 
they always 
regained 
synchrony 

2 Not so obvious:   https://www.youtube.com/watch?v=SGgbRkix_hY 



Examples 

– Fireflies  
     
https://www.youtube.com/wat
ch?v=ZGvtnE1Wy6U 

– Neuron network 
– Pacemaker cells in 

the heart 
– Human physiology: 

walking, breathing 
– Chirping of crickets 
– the burst into 

spontaneous 
applause     
https://www.youtube.com/
watch?v=Au5tGPPcPus 

– Etc. 
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Oscillating metronomes – a  demonstration 

https://www.youtube.com/watch?v=bl2aYFv_978 4 



Synchronization – definition  

• The spontaneous harmonization of units executing 
periodic behavior 

• What is common: coupled oscillators with nonlinear 
interaction 

• 2 types of signals: 

(i) Delta-type “bursts”  and   (ii) Continuous signals 
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Kuramoto model 
• The original formulation was 

motivated by the behavior of systems 
of chemical and biological oscillators 

• A mathematical model used to 
describe the behavior of a large set of 
coupled oscillators (how and when 
they synchronize)   

• Later it has found widespread 
applications in other fields too 
(neuroscience, physical systems, etc.) 

• The model makes several 
assumptions:   
– the oscillators are identical or nearly 

identical  
– the interactions depend sinusoidally on 

the phase difference between each pair 
of objects. 
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Distinct synchronization patterns in a two-
dimensional array of Kuramoto-like oscillators with 

differing phase interaction functions and spatial 
coupling topologies. (A) Pinwheels. (B) Waves. (C) 

Chimeras. (D) Chimeras and waves combined. Color 
scale indicates oscillator phase. 



The Kuramoto model (KM) 

• Continuous time and phase 
• Consists of a population of N coupled oscillators 
• Each tries to run independently at its own frequency, 

while the coupling tends to synchronize it to all  the  
others 
• 𝜙𝑖 : the phase of oscillator i (in the sense of mod 2π) 
• 𝑡 : time 
• 𝑇𝑖 : periodic time 

• 𝜈𝑖 =
1

𝑇𝑖
 : frequency 

• 𝜔𝑖 =
2𝜋

𝑇𝑖
 : natural frequency 

• One oscillator (an oscillator without interaction): 
𝑑𝜙

𝑑𝑡
= 𝜔 
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The Kuramoto model in mean field approximation 

• N coupled oscillators interacting with each others pairwise : 

 

𝑑𝜙𝑖
𝑑𝑡
= 𝜔𝑖 +  Γ𝑖𝑗(𝜙𝑗 − 𝜙𝑖)

𝑁−1

𝑗=0

,        𝑖, 𝑗 = 0,1,… ,𝑁 − 1  

  

• Γ𝑖𝑗(Δ𝜙) : interaction, a function with 2π periodicity 

• In the most simple case, all the oscillators interact with each other 
the same way (this was the simplifying assumption of Kuramoto): 

 

Γ𝑖𝑗 𝜙 =
𝐾

𝑁
sin(𝜙) ,                   𝑖, 𝑗 = 0,1,… ,𝑁 − 1  

 

• K : strength of the coupling 

• If K > 0 → Γ minimizes the phase difference 

• The spatial position of the oscillators is irrelevant → mean field appr. 
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The Kuramoto model in mean field approximation 

• The basic formula of the KM with MF approximation: 
 

𝑑𝜙𝑖
𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
 sin(𝜙𝑗 − 𝜙𝑖) 

𝑁−1

𝑗=0

,        𝑖, 𝑗 = 0,1, … , 𝑁 − 1  

• How do such oscillators synchronize? 
• How can we measure the level of synchronization? 

– Order parameter: An order parameter is a measure of the degree of 
order across the boundaries in a phase transition system; it normally 
ranges between zero in one phase and nonzero in the other. 

• A trivial order parameter can be: 𝑅 =
𝑁𝑆

𝑁
 , where NS is the 

number of synchronized units 
• We will introduce an other one (the so called Kuramoto order 

parameter, which is appropriate to monitor the transition 
towards synchronization) 9 



Order parameter for the Kuramoto model 

• Let us assume that  

– the 𝜔𝑖  natural frequencies are taken from a 
Gaussian distribution 𝑔(𝜔)   

– The expected value of the 𝑔(𝜔) density 

   function is 𝜔0, with 𝜎 standard deviation  

 

𝑔 𝜔 =
1

𝑁
 𝛿(𝜔𝑖 −𝜔)

𝑁−1

𝑖=0

=
1

𝜎 2𝜋
𝑒
−
(𝜔−𝜔0)

2

2𝜎2  
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Remark 
• If  

– the 𝑔(𝜔) distribution is infinitesimally narrow  

    ( 𝜎 = 0  → 𝑔 𝜔 = 𝛿(𝜔 − 𝜔0)  ) 

– And the oscillators are located on a 2D lattice 

• Then  
– we get a 2D ferromagnetic XY model: 
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Defining the order parameter 

• Parameter transformation: 
Ψ𝑖 ≔ 𝜙𝑖 − 𝜔0𝑡 
𝜔𝑖 ← 𝜔𝑖 −𝜔0 

                     (𝜔0 : average natural frequency) 

• The Kuramoto formula is invariant to the above 
transformation: 

𝑑𝜓𝑖
𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
 sin(𝜓𝑗 − 𝜓𝑖) 

𝑁−1

𝑗=0

, 𝑖, 𝑗 = 0,1,… ,𝑁 − 1  

• 𝜃(𝑡): the vectorial average of the (transformed) 𝜓𝑖 unit vectors 
• Now we can define the order parameter as next: 

𝑧 𝑡 ≔ 𝑍 𝑡 𝑒𝑖𝜃 𝑡 =
1

𝑁
 𝑒𝑖𝜓𝑗(𝑡)
𝑁−1

𝑗=0

 

(here 𝑖 is not the index of an oscillator, but −1) 
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Defining the order parameter – cont. 

𝑧 𝑡 ≔ 𝑍 𝑡 𝑒𝑖𝜃 𝑡 =
1

𝑁
 𝑒𝑖𝜓𝑗(𝑡)
𝑁−1

𝑗=0

 

Complex order param.     Real part     
1

𝑁
𝑁 𝑒𝑖𝜓𝑗(𝑡)  

                                                                              =1  

• Z 𝑡  is the real part of 𝑧(𝑡), → 𝑍 = 𝑧  

• Z 𝑡  is the order parameter with the following properties: 

– Expresses the “closeness” of the 𝜓𝑖 unitvectors 

– If 𝑍 ≈ 1 → the 𝜓𝑖 phases are close to each other 

– If 𝑍 ≈0 → the 𝜓𝑖 phases point in random direction 
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Bifurcation 
• In the uncoupled limit (K=0) each element 𝑖 describes limit-cycle 

oscillations with characteristic frequency 𝜔𝑖.  
• Kuramoto showed that, by increasing the coupling K the system 

experiences a transition towards complete synchronization, i.e. , a 
dynamical state in which 𝜓𝑖 𝑡 = 𝜓𝑗 𝑡  for ∀𝑖, 𝑗 and ∀𝑡.  

• This transition shows up when the coupling strength exceeds a critical 
value whose exact value is 

 𝐾𝐶 =
2

𝜋∙𝑔(𝜔0)
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From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model. 

(𝜔0 is the mean 
frequency of the 𝑔 𝜔  
frequency distribution) 
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From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model. 

(𝜔0 is the mean 
frequency of the 𝑔 𝜔  
frequency distribution) 
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Synchronization in the classical Kuramoto model. Each panel on the top shows the collection of oscillators 

situated in the unit circle (when each oscillator j is represented as 𝑒𝑖𝜓𝑗(𝑡)).  
The color of each oscillator represents its natural frequency. From left to right we observe how oscillators 
start to concentrate as the coupling K increases. In the panels below we show the synchronization diagram, 
i.e. , the Kuramoto order parameter Z as a function of K . It is clear that Kc = 1 . 
 
 From: Mendoza et al., 2014, Synchronization in a semiclassical Kuramoto model.  



Simulation results  

17 

Z : order parameter 
t : time 
N = 200 coupled oscillators 
σ = 1 
K = 2.5 (top curve),  
       0.5 (middle curve) 
       0 (bottom curve)  

→ K=0 and K=0.5 (weak coupling) results in similar order parameter 
 



For the region where Z is constant 
• According to Kuramoto’s analysis, based on the definition of the order 

parameter and on the time evolution of the phases, we get: 
 

𝑑𝜓𝑖
𝑑𝑡
= 𝜔𝑖 + 𝐾𝑍 sin(𝜃 − 𝜓𝑖) 

 
• A set of one-dimensional uncoupled system! 
• In other words: the particle is just interacting with the mean-field 

(produced by the average) 
 

• But for this you need Z to be independent of t  
– Q: How can it be, given that there are drifting oscillators?  
 (Z<1 → the synchronization is not perfect → there are “drifting” 
 oscillators) 
– A: The oscillators form a stationary distribution on the circle 

 

(     Original form was:  
𝑑𝜓𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
 sin(𝜓𝑗 − 𝜓𝑖) 
𝑁−1
𝑗=0     ) 
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https://www.youtube.com/watch?v=9zrOoVlN8tg 
19 



Outlook: Kuramoto model on networks. 
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https://www.youtube.com/watch?
v=hzRhdUkZc-s 

The all-to-all coupling 
considered originally by 
Kuramoto can be trivially 
generalized to any 
connectivity structures 
by introducing other 
coupling forms (via 
(weighted) adjacency 
matrices, graphs, etc.)  
 
This allows for the study 
of the synchronization 
properties of a variety of 
real-world systems for 
which interactions  
between constituents 
are better described as a 
complex networks. 



Distance dependency 

• In some cases dependency on the distance is more realistic than 
MF 

• Assumptions: 
– Oscillators sit on a grid 

– 𝑟𝑖,𝑗  is the distance between oscillators i and j 

– 𝛼 is an exponent determining the strength of the distance dependency 
– 𝜂 is a renormalizing factor 

• The time evolution of the oscillator phases: 
𝑑𝜙𝑖
𝑑𝑡
= 𝜔𝑖 +

𝐾

𝜂
 
sin(𝜙𝑗 − 𝜙𝑖)

𝑟𝑖,𝑗
𝛼

𝑖≠𝑗

 

• Can not be handled analiticly 
• Dependency on 𝛼: 

• 𝛼 = 0 : no dependency, gives back the mean field approach 
• 𝛼 → ∞ : the interaction decays fast, interaction only with the first 

neighbor 
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• In most physically realistic case 𝛼 = 𝑑 − 1 
• If 𝛼 > 𝑑, then the connection term is finite for ∀𝑁: 

 

 
1

𝑟𝑖,𝑗
𝛼

𝑖≠𝑗

sin(𝜙𝑗 − 𝜙𝑖) ≤ 
1

𝑟𝑖,𝑗
𝛼
< ∞

𝑁

𝑖≠𝑗

 

 
• If 𝛼 ≤ 𝑑, then  

– If 𝑁 → ∞ then for ∀𝐾 > 0 : synchronization 
 

• The tendency for synchronization can be stronger than in the MF 
case 
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Distance dependency  
𝑑𝜙𝑖
𝑑𝑡
= 𝜔𝑖 +

𝐾

𝜂
 
sin(𝜙𝑗 − 𝜙𝑖)

𝑟𝑖,𝑗
𝛼

𝑖≠𝑗

 



Noisy oscillators in the KM 
• Noise is usually present in real-life systems 

– From internal sources (evaluation of influences, differences in states, etc.) 
– From external sources (perturbations of the environment, effects of other oscillators, 

etc.) 
– We unite these effects in one parameter 𝜉. 

• Q: how random noise changes the synchronization behavior of the Kuramoto 
model? 
– Strong coupling: the system synchronizes 
– Big noise: desynchronizes the system 

• Noise term 𝜉𝑖 is defined as                                                   (white noise) 
 

𝜉𝑖(𝑡) = 0 
 

𝜉𝑖(𝑠)𝜉𝑗(𝑡) = 2𝐷𝛿𝑖𝑗𝛿(𝑠 − 𝑡) 

 
• First condition: the time average of the noise acting on oscillator 𝑖 is zero 
• Second condition:  the noise terms for different oscillators or different times are 

non-correlated 
• The strength of the noise is set by the parameter D. 
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Noise in the discrete Kuramoto model 

• The KM with the above defined noise: 
 

𝑑𝜙𝑖
𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
 sin 𝜙𝑗 − 𝜙𝑖 + 𝜉𝑖

𝑁−1

𝑗=0

 

 
• Or in other form: 

 
𝑑𝜓𝑖
𝑑𝑡
= 𝜔𝑖 + 𝐾𝑍 sin(𝜃 − 𝜓𝑖) + 𝜉𝑖  

 
• For running simulations of the Kuramoto model with noise, these equations 

are enough, since the noise term ξ can be simulated with a random number 
generator 

• The correct form of ξ to use for each time-step is a random value chosen from 
a normal (Gaussian) distribution of mean zero and width 𝛽2 Δ𝑡  , where 

• 𝛽2 defines the strength of the noise, and 
• Δ𝑡 is the time of the time-steps used in the simulations 
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Simulation results with white noise introduced to the discrete KM 

25 
From: Bryan C. Daniels: Synchronization of Globally Coupled Nonlinear Oscillators: 
the Rich Behavior of the Kuramoto Model, Fig 4.2. 

The dependency of the magnitude of the order parameter  Z on the coupling K in presence of 
noise. 𝛽2 sets the strength of the noise. From theoretical results 𝐾𝐶  is predicted to occur at 

𝛽2 + 1 , shown as three vertical lines at 1.5, 2.0, and 2.5. 

N=5000 
 



Synchronization of integrate and fire 
(IF) oscillators with global coupling 

• In biology, episodic, pulse-like interactions 
are common.  

• Crickets exchanging chirps 
• Voltage pulses for cardiac cells 
• Synaptic pulses for neurons 
• Light flash (fireflies) 

– IF models have been developed to describe 
these cases 

– Has physical applications too (earthquake) 

• IF models: 
– An IF oscillator is described by  

• some real-valued state variable (e.g., 
membrane potential) 

• Monotonic increase up to a threshold value 
• When the threshold is reached, the oscillator 

relaxes to a basal level by firing a pulse to the 
other oscillators 

• A new period 

 
 
Samuele Bottani: Synchronization of integrate and fire oscillators 
with global coupling, Physical Review E, Vol. 54, 1996 
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https://www.youtube.com/watch?v=JzJmLf5cB7s 



An example: a certain neuron in the visual pathway 

https://www.youtube.com/watch?v=dsCItnAlh5k 27 



Model variations 
• Models: 

– The nature of coupling (grid, global coupling, network, etc.) 
– Identical or non-identical oscillators 

• Firing  amplitude, frequency 

– The nature of the state function (evolution function) 
• Convex / concave / linear 

– Nature of noise 
– Excitatory / inhibitory pulses  
– With or without transmission delay / fall time 
 

• Q: What are the conditions for synchronization? 
 

• What we will consider now: 
– Global all-to-all coupling 
– Identical oscillators 
– Convex, concave and linear 
– Without noise 
– Excitatory pulses 
– Without transmission delay and fall time 28 



Describing one IF oscillator 
• N IF oscillators, 𝑂𝑖   (𝑖 = 1,… , 𝑁) 

• Each represented by a (real) state variable 𝐸𝑖 ∈ 0, 𝐸𝑖
𝐶  

• 𝐸𝑖
𝐶  : threshold of the oscillators (identical); 𝐸𝑖

𝐶: = 1  (we choose the unit like this) 
• 𝜙𝑖  : the phase of oscillator 𝑖, 𝜙𝑖 ∈ 0,1  
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The free evolution of 𝑂𝑖  is made up of two parts: 
 
1. A charging/growth period during which 𝐸𝑖 

increases monotonically in time as long as it 

is below the threshold 𝐸𝑖
𝐶  according to a 

given free evolution function 𝐸𝑖 = 𝑓(𝜙(𝑡)) . 
(“integrate”) 

2. A relaxation when the threshold is reached 
whereby 𝐸𝑖 is reset to zero and a new growth 
period starts again.  (“fire”) 

 
𝐸𝑖 = 0 ↔  𝜙𝑖 = 0 
𝐸𝑖 = 1 ↔  𝜙𝑖 = 1 

that is 
𝑓 0 = 0 𝑎𝑛𝑑 𝑓 1 = 1 

 Assumption: the characteristic time for the relaxation is very short compared to the charging 
period; “instantaneous”. 



Interaction 

• If the state (energy level) of an oscillator 𝑂𝑖 

reaches its threshold (𝐸𝑖
𝐶 = 1), then it fires 

 

• This firing increases the state (energy level) 
of its neighbors with 𝜀 

– 𝐸𝑗 → 𝐸𝑗 + 𝜀,     or, if 

– 𝐸𝑗 + 𝜀 > 1, then 𝐸𝑗 = 1 

“phase advance model” 

• The pulse strength depends on the number 
of oscillators that fire together and obey an 
additivity principle 

• We assume direct additivity (𝑛 ∙ 𝜀, where ε 
is the pulse strength of the firing oscillator) 
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Excitatory → Increases 𝐸𝑗, and thus anticipating the firing. (this is the type we consider)  

 
Inhibitory → Decreases 𝐸𝑗, and thus delaying the firing. 



How can they synchronize? – the problem 

31 
From: Samuele Bottani, Synchronization of integrate and fire oscillators with global coupling, 
Physical Review E, Vol. 54, 1996, Fig 1 

The oscillator (1) is at 
the threshold; the 

oscillator (2) is below 
the threshold at a 

distance smaller than 𝜀, 
which is the pulse 

strength of a single 
firing. 

The oscillator (1) has 
relaxed and the 

emitted pulse has 
pushed the oscillator 

(2) above the 
threshold and thus 

makes it fire. 

Without absorption 
the firing of oscillator 

(2) has pushed (1) 
away from the origin: 
the oscillators remain 

de-phased. 



Avalanches and the absorption rule 
• Avalanche: a cascade of firings until no pulse is sufficient enough to bring another 

oscillator above threshold. 

– It may occur when an oscillator reaches the threshold: depending on the other 
oscillator states the transmitted pulse may cause some other oscillators to 
exceed the threshold and fire. Possibly the new pulses may themselves cause 
further relaxations and such a cascade of firings. 

– In our model the firing is very fast compared to the integration period, so 
during an avalanche the continuous drive of the oscillators is not acting. 

– Connection to SOC 

 

• Absorption rule: is the assumption that the oscillators that relax during the same 
avalanche are insensitive to the further pulses in the avalanche.  

– This rule corresponds the refractory time of the oscillators immediately after 
their relaxation.  

 

• Synchronization (definition): oscillators get in phase (get synchronized) when they 
fire in a same avalanche. (“they are absorbed in a synchronized group of oscillators 
with identical phase”) 32 



Synchronization with various 𝑓(𝜙)-s 

From: Samuele Bottani, Synchronization of integrate and fire oscillators with global coupling, Physical Review E, Vol. 54, 1996, Fig 2 
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(Left:) Synchronization without absorption for identical convex oscillators. Oscillator (1): Immediately after 
their avalanche two oscillators Oi and Oi-1 have a gap between their states E of value 𝜀. 𝜏 is the gap between 

the phases of Oi and Oi-1, which does not change during the free evolution between firings. Oscillator (2): 
When the most advanced oscillator is at the threshold the gap between their phases has not changed but 

the gap between their state variables has decreased due to the convexity. The second oscillator is at a 
distance of the threshold smaller than d: the oscillators avalanche again together. 

 
(Middle:) Synchronization without absorption for identical linear oscillators. Same as for the convex case, 
but due to the linearity the gap between the state values does not change and is exactly equal to 𝜀: the 

oscillators still avalanche together.  
 

(Right:) Effect of concavity. The gap between the oscillator states increases as the pair approaches the 
threshold. 



Statements  

(1) It has been shown that a population of 
– Identical  
– integrate and fire oscillators  
– with convex evolution function 
– globally coupled by 
– exciting pulses  
– added to the state variables  

Synchronize completely1 

 
(2) In the presence of absorption, all the three 
types of evolution functions  

– Convex 
– Concave 
– Linear 

Synchronize, if N is big.2 
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1Mirollo and Strogatz, 1990 
2Bottani, 1996 


